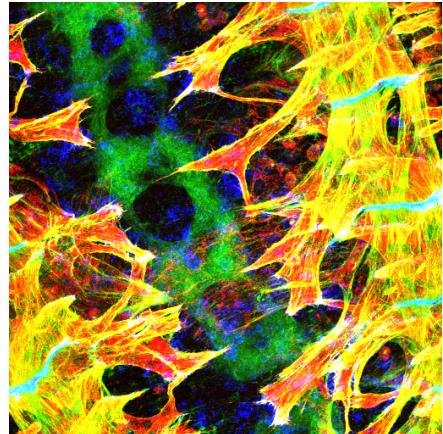


Image Processing II

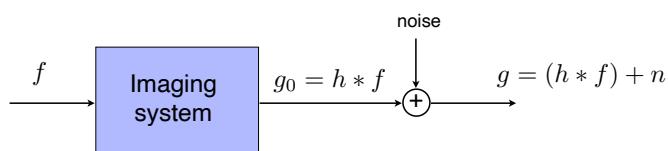
Chapter 9 Image reconstruction in the continuum

Prof. Michael Unser, LIB



April 2024

Measurement system



■ Assumption of linearity and shift-invariance

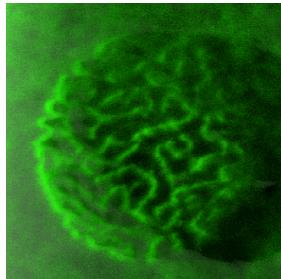
$$g(\mathbf{x}) = (h * f)(\mathbf{x}) + n(\mathbf{x})$$

$$H(\omega) = \mathcal{F}\{h\}(\omega) = \int_{\mathbb{R}^d} h(\mathbf{x}) e^{-j\langle \omega, \mathbf{x} \rangle} d\mathbf{x}_1 \cdots d\mathbf{x}_d \quad (\text{optical transfer function})$$

■ Noise

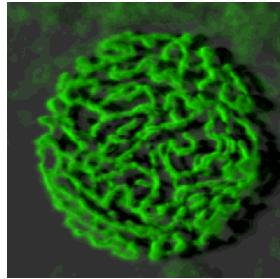
- Sources: counting statistics (shot noise), dark current (thermal noise), charge-to-voltage conversion errors (CCD read-out noise)
- Statistical distribution: white Gaussian, Poisson (fluorescence, confocal microscopy), or speckle (ultrasound, coherent imaging)

Deconvolution challenge



Original 3D data

Deconvolution



Max. likelihood deconv (30 iterations)
(Huygens software)

DNA in the nucleus of a sea-urchin cell. The images are of size 512 x 512 x 80

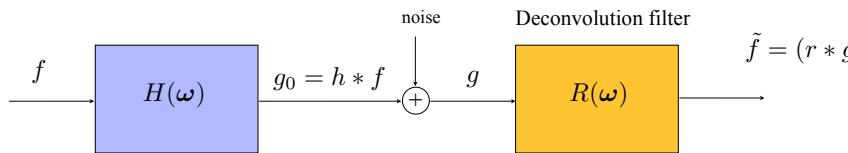
9-3

TABLE OF CONTENT

- **9.1 Deconvolution by linear, space-invariant filtering**
 - Inverse filter
 - Wiener filter
- **9.2 Radon transform and filtered backprojection**
 - Radon transform
 - Sinogram
 - Backprojection
 - Inverse Radon transform
 - Filtered backprojection
 - Sampling considerations

9.1 DECONVOLUTION BY LSI FILTERING

■ Restoration algorithm: linear, space-invariant filter



$$\begin{aligned}
 G_0(\omega) &= H(\omega) \cdot F(\omega) \\
 \tilde{F}(\omega) &= R(\omega) \cdot G(\omega) \\
 &= \underbrace{R(\omega) \cdot G_0(\omega)}_{\text{signal contribution}} + \underbrace{R(\omega) \cdot N(\omega)}_{\text{noise contribution}}
 \end{aligned}$$

■ Problems

- How to select the optimal filter
- How to balance signal recovery versus noise amplification

9-5

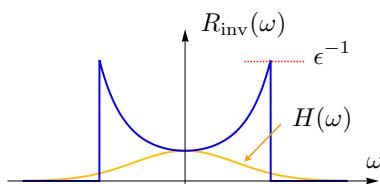
Restoration by inverse filtering

■ Inverse-filtering solution

Assumption: measurement noise is negligible

$$G(\omega) \simeq H(\omega) \cdot F(\omega)$$

$$\Rightarrow R_{\text{inv}}(\omega) = \frac{1}{H(\omega)}$$



■ Limitations

- Inverse filter may be unstable

⇒ stabilized version

$$R_{\text{inv}}(\omega) = \begin{cases} \frac{1}{H(\omega)}, & |H(\omega)| \geq \epsilon > 0 \\ 0, & \text{otherwise} \end{cases}$$

- Amplification of noise

$$\tilde{F}(\omega) = R_{\text{inv}}(\omega) \cdot (G_0(\omega) + N(\omega)) = \underbrace{F(\omega)}_{\text{signal}} + \underbrace{R_{\text{inv}}(\omega) \cdot N(\omega)}_{\text{amplified noise}}$$

9-6

Inverse filtering (Cont'd)

- Blur (noise-free)

- Original image

- Blur + additive noise

Inverse filtering (stabilized version)

9-7

Wiener filter

- Basic hypothesis: $g = (h * f) + n$

Signal f = realization of a wide-sense stationary process with known 2nd-order statistics

Spatial autocorrelation function: $E\{f(\mathbf{x})f(\mathbf{y})\} = c_f(\mathbf{x} - \mathbf{y})$

- A priori knowledge

$H(\omega)$: optical transfer function

$\Phi_f(\omega) = \mathcal{F}\{c_f(\mathbf{x})\}(\omega)$: Power spectrum of signal

$\Phi_n(\omega) = \mathcal{F}\{c_n(\mathbf{x})\}(\omega)$: Power spectrum of noise; typ., $\Phi_n(\omega) = \sigma^2$ (white noise)

- Optimal Wiener filter

Minimum mean-square error (MMSE) estimator

$$R_{\text{Wiener}}(\omega) = \frac{\Phi_f(\omega)H^*(\omega)}{\Phi_f(\omega)|H(\omega)|^2 + \Phi_n(\omega)}$$

9-8

Wiener filter (Cont'd)

■ Wiener filter: extreme cases

Noise is negligible

$$\Phi_n(\omega) \ll \Phi_f(\omega) \cdot |H(\omega)|^2$$

$$\Downarrow$$

$$R_{\text{Wiener}}(\omega) \approx \frac{1}{H(\omega)} \quad (\text{inverse filter})$$

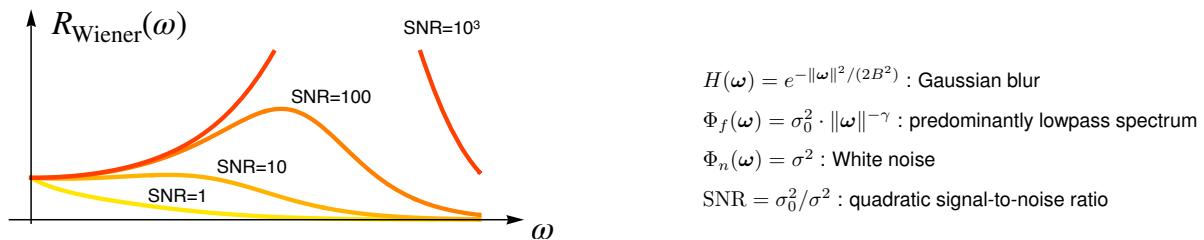
Noise is dominant

$$\Phi_n(\omega) \gg \Phi_f(\omega) \cdot |H(\omega)|^2$$

$$\Downarrow$$

$$R_{\text{Wiener}}(\omega) \approx 0 \quad (\text{suppression})$$

■ Example



9-9

Derivation of the Wiener filter

Hypothesis: $\tilde{f} = r * \overbrace{(h * f + n)}^g$ where f and n are realizations of stationary processes

$$\text{MSE} = \mathbb{E}\{|\tilde{f} - f|^2\} = \mathbb{E}\{|\tilde{f}|^2\} - 2\mathbb{E}\{\tilde{f} \cdot f\} + \mathbb{E}\{|f|^2\}$$

Wiener-Khinchin theorem

$$\mathbb{E}\{|\tilde{f}|^2\} = \frac{1}{(2\pi)^d} \int_{\mathbb{R}^d} |R(\omega)|^2 \Phi_g(\omega) d\omega_1 \cdots d\omega_d \quad \Phi_g(\omega) = |H(\omega)|^2 \Phi_f(\omega) + \Phi_n(\omega)$$

$$\mathbb{E}\{|f|^2\} = \frac{1}{(2\pi)^d} \int_{\mathbb{R}^d} \Phi_f(\omega) d\omega_1 \cdots d\omega_d$$

$$\mathbb{E}\{\tilde{f} \cdot f\} = \text{Re} \left(\frac{1}{(2\pi)^d} \int_{\mathbb{R}^d} R^*(\omega) H^*(\omega) \Phi_f(\omega) d\omega_1 \cdots d\omega_d \right) \quad (\text{hyp: } \Phi_{fn}(\omega) = 0)$$

$$\begin{aligned} \Rightarrow \text{MSE} &= \frac{1}{(2\pi)^d} \int_{\mathbb{R}^d} |R(\omega)|^2 \Phi_g(\omega) - 2\text{Re}(R^*(\omega) H^*(\omega) \Phi_f(\omega)) + \Phi_f(\omega) d\omega_1 \cdots d\omega_d \\ &= \frac{1}{(2\pi)^d} \int_{\mathbb{R}^d} \left(\Phi_g(\omega) \left| R(\omega) - \frac{H^*(\omega) \Phi_f(\omega)}{\Phi_g(\omega)} \right|^2 - \frac{|H(\omega)|^2 |\Phi_f(\omega)|^2}{\Phi_g(\omega)} + \Phi_f(\omega) \right) d\omega_1 \cdots d\omega_d \end{aligned}$$

Since $\Phi_g(\omega) \geq 0, \forall \omega \in \mathbb{R}^d$

$$\text{MSE minimum when } R(\omega) - \frac{H^*(\omega) \Phi_f(\omega)}{\Phi_f(\omega) |H(\omega)|^2 + \Phi_n(\omega)} = 0$$

9-10

Wiener filter: properties

- Factorization: MMSE denoising of g followed by inverse filtering

$$R_{\text{Wiener}}(\omega) = \frac{\Phi_f(\omega) |H(\omega)|^2}{\Phi_f(\omega) |H(\omega)|^2 + \Phi_n(\omega)} \cdot \frac{1}{H(\omega)} = \frac{\Phi_{h*f}(\omega)}{\Phi_{h*f}(\omega) + \Phi_n(\omega)} \cdot \frac{1}{H(\omega)}$$

- Optimality properties

- MMSE space-invariant restoration filter
- MMSE linear estimator for stationary processes
- MMSE estimator for Gaussian stationary processes

- Limitations

- Spectral power densities are not always known
- Can be outperformed by space-variant and/or nonlinear algorithms

9-11

9.2 RADON TRANSFORM AND FILTERED BACKPROJECTION

- Radon transform
- Sinogram
- Backprojection
- Inverse Radon transform
- Filtered backprojection
- Sampling considerations

Projection and Radon transform

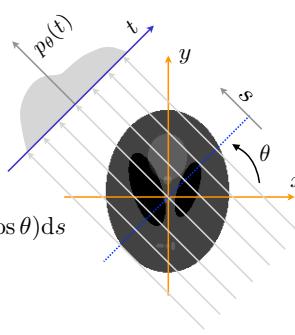
Johann Radon 1887-1956

■ Radon transform

$$\mathcal{R} : L_1(\mathbb{R}^2) \rightarrow L_1(\mathbb{R} \times [0, \pi])$$

$$p_\theta(t) = \mathcal{R}\{f\}(t, \theta) = \int_{\mathbb{R}} f(t \cos \theta - s \sin \theta, t \sin \theta + s \cos \theta) ds$$

$$= \int_{\mathbb{R}^2} f(\mathbf{x}) \delta(t - \theta^\top \mathbf{x}) dx dy$$



$$\text{Unit vector along } t\text{-axis: } \theta = (\cos \theta, \sin \theta) \Rightarrow t = \theta^\top \mathbf{x}$$

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{pmatrix} t \\ s \end{pmatrix}$$

⇓

$$\begin{pmatrix} t \\ s \end{pmatrix} = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

Boundedness: $f \in L_1(\mathbb{R}^2) \Rightarrow p_\theta = \mathcal{R}\{f\}(\cdot, \theta) \in L_1(\mathbb{R}) \text{ for all } \theta \in [0, \pi]$

$$\Rightarrow \|\mathcal{R}\{f\}(\cdot, \theta)\|_{L_1(\mathbb{R} \times [0, \pi])} = \int_0^\pi \int_{\mathbb{R}} |\mathcal{R}\{f\}(t, \theta)| dt d\theta \leq \pi \|f\|_{L_1(\mathbb{R}^2)}$$

■ Sinogram

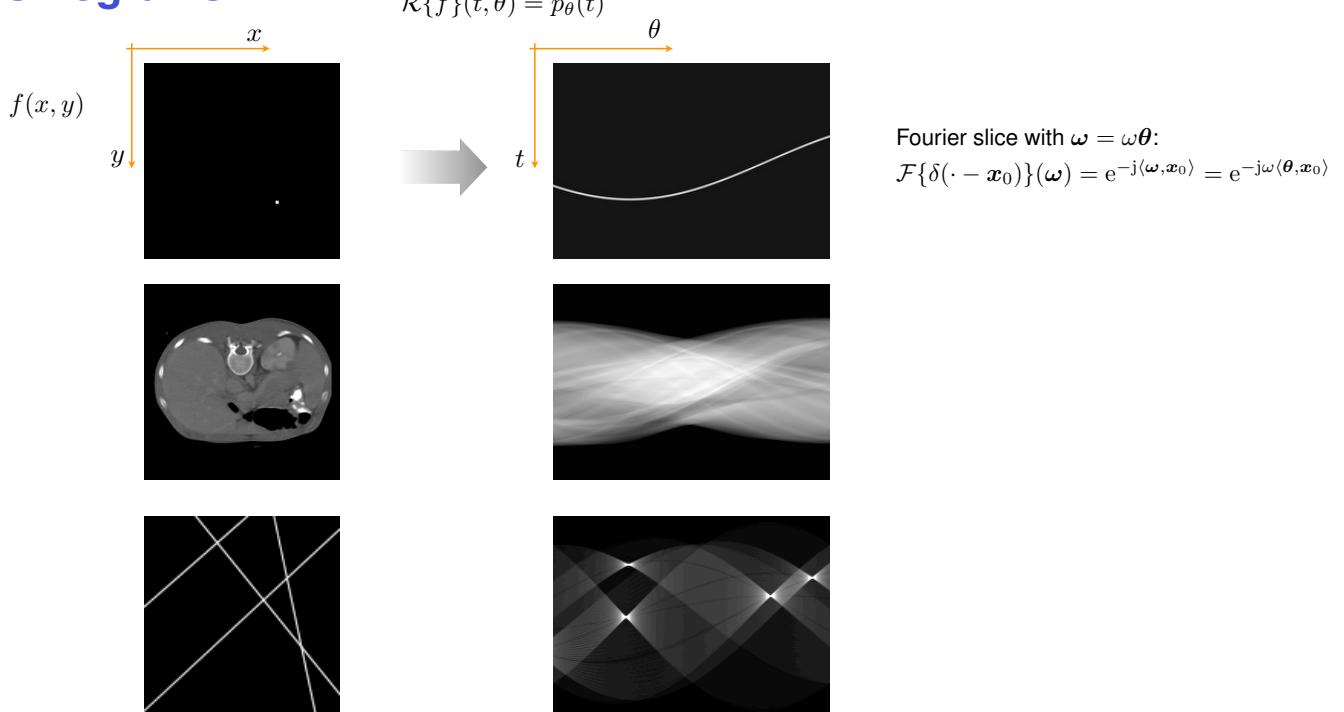
Trajectory of a point (x_0, y_0) in Radon space:

$$t_0(\theta) = x_0 \cos \theta + y_0 \sin \theta \Leftrightarrow t_0 = \theta^\top \mathbf{x}_0$$

$$\text{In polar coordinates: } x_0 = r \cos \phi, \quad y_0 = r \sin \phi \quad \Rightarrow \quad t_0 = r \cos(\theta - \phi)$$

9-13

Sinograms



9-14

Properties of the Radon transform

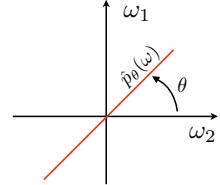
Context: $f \in L_1(\mathbb{R}^2) \Rightarrow \hat{f} = \mathcal{F}\{f\} \in C_0(\mathbb{R}^2)$ (i.e., $\hat{f}(\omega)$ is bounded and continuous)

Polar representation of Fourier transform:

$$\hat{f}_{\text{pol}}(\omega, \theta) = \hat{f}(\omega)|_{\omega=(\omega \cos \theta, \omega \sin \theta)} \quad \text{where} \quad \hat{f}(\omega) = \int_{\mathbb{R}^2} f(x) e^{-j\langle \omega, x \rangle} dx$$

$$p_\theta(t) = \mathcal{R}\{\varphi\}(t, \theta) \quad (\text{projection at angle } \theta)$$

■ Fourier-slice theorem: $\int_{\mathbb{R}} \mathcal{R}\{\varphi\}(t, \theta) e^{-j\omega t} dt = \hat{\varphi}(\omega)|_{\omega=\omega_\theta}$ $\hat{p}_\theta(\omega) = \hat{\varphi}(\omega \cos \theta, \omega \sin \theta)$



■ Projected translation invariance: $\mathcal{R}\{\varphi(\cdot - x_0)\}(t, \theta) = \mathcal{R}\{\varphi\}(t - \langle \theta, x_0 \rangle, \theta)$

Justification: Fourier-slice Theorem + phase shift with $e^{-j\langle \omega, x_0 \rangle} = e^{-j\omega \langle \theta, x_0 \rangle}$

■ Pseudo-distributivity with respect to convolution

For any fixed θ : $\mathcal{R}\{\varphi * \phi\}(t, \theta) = (p_\theta * q_\theta)(t)$ where $p_\theta(t) = \mathcal{R}\{\varphi\}(t, \theta)$ and $q_\theta(t) = \mathcal{R}\{\phi\}(t, \theta)$

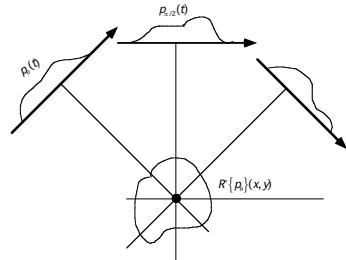
9-15

Backprojection

■ Backprojection operator

$$\mathcal{R}^* : L_\infty(\mathbb{R} \times [0, \pi]) \rightarrow L_\infty(\mathbb{R}^2)$$

$$b(x, y) = \mathcal{R}^*\{p_\theta(t)\}(x, y) = \int_0^\pi p_\theta(x \cos \theta + y \sin \theta) d\theta$$



Interpretation: accumulation of the ray-sums of all rays passing through the point (x, y)

■ Adjoint property

The backprojection is the adjoint of the projection operator \mathcal{R}

$$\forall f \in L_1(\mathbb{R}^2), \forall p \in L_\infty(\mathbb{R} \times [0, \pi]), \quad \langle \mathcal{R}f, p \rangle_{\text{Rad}} = \langle f, \mathcal{R}^*p \rangle$$

Duality products:

$$\forall (f, g) \in L_1(\mathbb{R}^2) \times L_\infty(\mathbb{R}^2) : \quad \langle f, g \rangle \triangleq \int_{\mathbb{R}^2} f(x, y) g(x, y) dx dy$$

$$\forall (p, q) \in L_1(\mathbb{R} \times [0, \pi]) \times L_\infty(\mathbb{R} \times [0, \pi]) : \quad \langle p, q \rangle_{\text{Rad}} \triangleq \int_0^\pi \int_{\mathbb{R}} p_\theta(t) q_\theta(t, \theta) dt d\theta$$

Interpretation

■ \mathcal{R}^* is the flow-graph transpose of \mathcal{R}

■ If \mathcal{R} is represented by a matrix \mathbf{R} , then its adjoint is \mathbf{R}^\top

$$\langle \mathbf{u}, \mathbf{R}\mathbf{v} \rangle = \mathbf{u}^\top \mathbf{R}\mathbf{v} = (\mathbf{R}^\top \mathbf{u})^\top \mathbf{v} = \langle \mathbf{R}^\top \mathbf{u}, \mathbf{v} \rangle$$

9-16

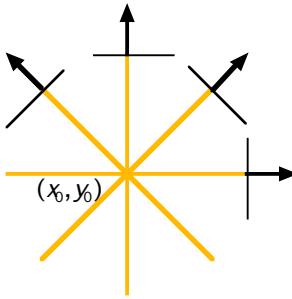
Reconstruction by backprojection

■ Approximate reconstruction

$$g(x, y) = \mathcal{R}^* \{p_\theta(t)\}(x, y) = \mathcal{R}^* \mathcal{R} \{f\}(x, y)$$

You don't know where the contribution comes from; thus, you put it back everywhere!

⇒ Blurring effect!



■ Impulse response

$$\mathcal{R}^* \mathcal{R} \{\delta\}(x, y) = \frac{1}{\sqrt{x^2 + y^2}} = \frac{1}{\|\mathbf{x}\|} \quad \xleftrightarrow{\mathcal{F}} \quad \frac{2\pi}{\|\omega\|} \quad (\text{isotropic})$$

■ Linear shift-invariant system

$$\mathcal{R}^* \mathcal{R} \{f\}(x, y) = \left(f * \frac{1}{\|\cdot\|} \right)(x, y)$$

9-17

Determination of impulse response

■ Projection of an impulse

$$\mathcal{R} \{\delta(\cdot - x_0, \cdot - y_0)\}(x, y) = \delta(t - x_0 \cos \theta - y_0 \sin \theta) \quad (\text{sinogram})$$

■ Backprojection of the impulse

$$\delta_\theta(t) = \delta(t - x_0 \cos \theta - y_0 \sin \theta)$$

$$\mathcal{R}^* \{\delta_\theta\}(x, y) = \int_0^\pi \delta(x \cos \theta + y \sin \theta - x_0 \cos \theta - y_0 \sin \theta) d\theta$$

$$\mathcal{R}^* \{\delta_\theta\}(x, y) = \int_0^\pi \delta((x - x_0) \cos \theta + (y - y_0) \sin \theta) d\theta = \frac{1}{\sqrt{(x - x_0)^2 + (y - y_0)^2}}$$

Hint: Make change of variable $\theta = \arctan(t)$

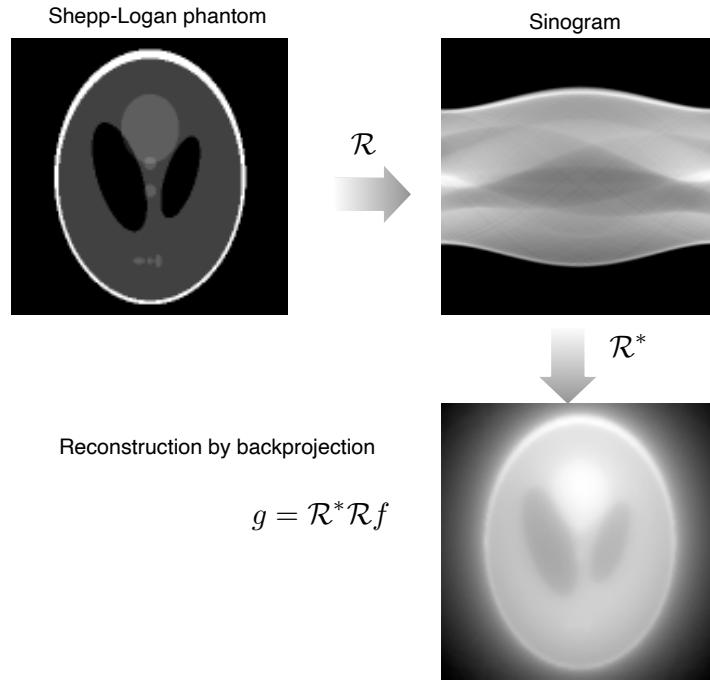
$$\Rightarrow \cos(\theta) = \frac{\text{sign}(t)}{\sqrt{1+t^2}}, \quad \sin(\theta) = \frac{|t|}{\sqrt{1+t^2}}, \quad d\theta = \frac{dt}{1+t^2}$$

$$\Rightarrow \mathcal{R}^* \{\delta_\theta\}(x, y) = \int_{-\infty}^{\infty} \delta((x - x_0) + t(y - y_0)) \frac{dt}{\sqrt{1+t^2}}$$

Let $g(t)$ be such that $g(t_n) = 0$.
Then, $\delta(g(t)) = \sum_n \frac{\delta(t - t_n)}{g'(t_n)}$

9-18

Backprojection at work



9-19

Inverse Radon transform

Hypothesis: $f \in L_1(\mathbb{R}^2) \Rightarrow \hat{f} = \mathcal{F}\{f\} \in C_0(\mathbb{R}^2) \text{ and } \mathcal{R}\{f\} \in L_1(\mathbb{R} \times [0, \pi])$

- Central-slice theorem: $\hat{p}_\theta(\omega) = \hat{f}(\omega \cos \theta, \omega \sin \theta) = \hat{f}_{\text{pol}}(\omega, \theta)$
- Fourier-based reconstruction: $f(\mathbf{x}) = \frac{1}{(2\pi)^2} \int_{\mathbb{R}^2} \hat{f}(\omega) e^{i\langle \omega, \mathbf{x} \rangle} d\omega_x d\omega_y$
- Reconstruction by filtered backprojection: $f(x, y) = \mathcal{R}^*\{q_\theta(t)\}(x, y)$

where $q_\theta(t) = (h * p_\theta)(t)$ with $h(t) \xleftarrow{\mathcal{F}} \frac{|\omega|}{2\pi}$

Proof: Fourier reconstruction in polar coordinates

$$f(x, y) = \frac{1}{(2\pi)^2} \int_0^{2\pi} \int_0^{+\infty} \underbrace{\hat{f}_{\text{pol}}(\omega, \theta)}_{\hat{p}_\theta(\omega)} e^{i\omega t} |\omega| d\omega d\theta \quad \text{with } t = x \cos \theta + y \sin \theta$$

Central-slice theorem + Fourier symmetry: $\hat{f}_{\text{pol}}(\omega, \theta + \pi) = \hat{f}_{\text{pol}}(-\omega, \theta) = \hat{p}_\theta(-\omega)$

$$\Rightarrow f(x, y) = \int_0^\pi \frac{1}{2\pi} \left(\int_{-\infty}^{+\infty} \hat{p}_\theta(\omega) \cdot \frac{|\omega|}{2\pi} \cdot e^{i\omega t} d\omega \right) d\theta$$

9-20

Filtered backprojection

- Theoretical formula: $f(x, y) = \mathcal{R}^* \{q_\theta(t)\}(x, y) = \int_0^\pi q_\theta(x \cos \theta + y \sin \theta) d\theta$
where $q_\theta(t) = (h * p_\theta)(t)$ and $h(t) \xleftrightarrow{\mathcal{F}} \frac{|\omega|}{2\pi}$

- Discrete implementation

- Discrete data \Rightarrow Digital filtering & Interpolation
- Finite number of projections \Rightarrow Quadrature formula

- Discrete backprojection

Loop over pixels: $\tilde{f}(x, y) = \underbrace{\left(\frac{\pi}{N}\right)}_{\Delta\theta} \cdot \sum_{i=1}^N q_{\theta_i}(x \cos \theta_i + y \sin \theta_i)$

Use interpolation to evaluate $q_{\theta_i}(t)$ for t non-integer (piecewise-linear or higher-order spline)

9-21

FBP filters

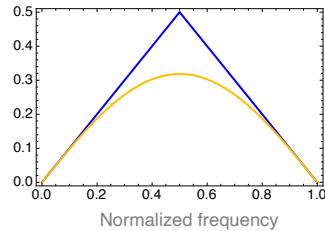
- 1D Filtering step

Loop over projections: $(p_{\theta_i}[k], i = 1, \dots, N)$

FFT: $p_{\theta_i}[k] \xrightarrow{\text{FFT}} P_{\theta_i}(e^{jn\omega_0})$

Filtering: $Q_{\theta_i}(e^{jn\omega_0}) = H(e^{jn\omega_0}) \cdot P_{\theta_i}(e^{jn\omega_0})$

Inverse FFT: $Q_{\theta_i}(e^{jn\omega_0}) \xrightarrow{\text{FFT}^{-1}} q_{\theta_i}[k]$



■ Ram-Lak filter

[Ramachandran & Lakshminarayanan, 1971]

$$\hat{h}_{RL}(\omega) = \frac{|\omega|}{2\pi} \cdot \text{rect}\left(\frac{\omega}{2\omega_{\max}}\right)$$

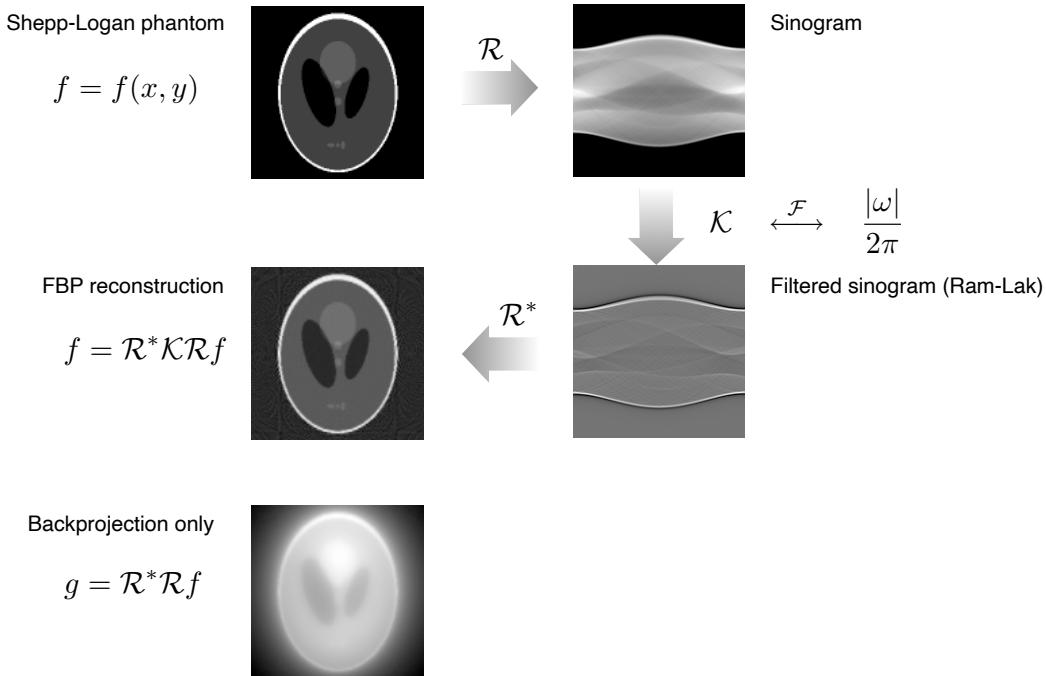
■ Shepp-Logan filter

[Shepp & Logan, 1974]

$$\hat{h}_{SL}(\omega) = \frac{|\omega|}{2\pi} \cdot \text{sinc}\left(\frac{\omega}{2\omega_{\max}}\right) \cdot \text{rect}\left(\frac{\omega}{2\omega_{\max}}\right)$$

9-22

FBP at work



9-23

FBP sampling considerations

■ Hypotheses

$\hat{f}_{\text{pol}}(\omega, \theta)$ is *essentially bandlimited* to ω_{max}

$f_{\text{pol}}(r, \phi)$ is *essentially space-limited* to R_{max}

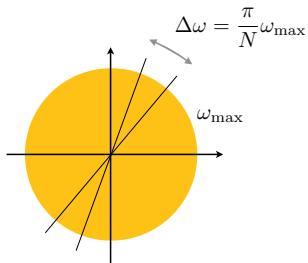
■ Maximum sampling step

$$\boxed{\Delta x \leq \frac{\pi}{\omega_{\text{max}}}} \quad (\text{Shannon})$$

$\Rightarrow M_{\text{min}} = \frac{2R_{\text{max}}}{\Delta x}$ samples per view

■ Minimum number of views

$$N_{\text{min}} = \frac{\pi \omega_{\text{max}}}{\Delta \omega} = \omega_{\text{max}} R_{\text{max}} \quad [\text{Brooks \& Weiss, 1978}]$$



$$\boxed{\Delta \omega \leq \frac{\pi}{R_{\text{max}}}} \quad (\text{Shannon in reverse})$$

9-24

Appendix A. X-ray computer (assisted) tomography (CT or CAT)

GODFREY N. HOUNSFIELD

Developed computer-assisted tomography.
Constructed first clinical CT-scan in 1972.
1979 Nobel Prize in medicine

ALAN M. CORMACK

Demonstrated the theoretical feasibility of X-ray computer-assisted tomography.
[model experiment in 1963-64]
1979 Nobel Prize in medicine

AARON KLUG

Developed computational techniques for the 3D reconstruction of electron micrographs.
[first 3D reconstruction in 1968]
1982 Nobel Prize in Chemistry

And a few other pioneers...

10-25

Physical principle: Absorption law

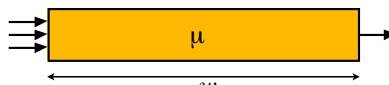
Interaction of EM radiation (X-rays or Gamma rays) with matter

⇒ Exponential law [Beer-Lambert]

μ : linear attenuation coefficient (cm^{-1})

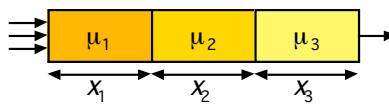
■ Homogeneous material

$$I = I_0 e^{-\mu w}$$



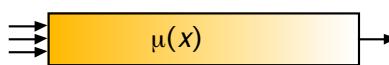
■ Discrete components

$$I = I_0 \exp \left(- \sum_{i=1}^n \mu_i x_i \right)$$



■ Continuous medium

$$I = I_0 \exp \left(- \int_0^w \mu(x) \, dx \right)$$

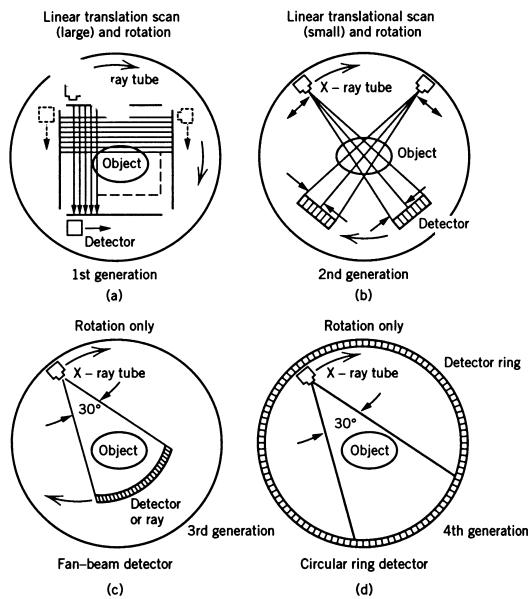
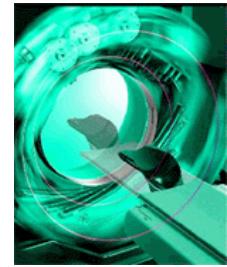


■ Projection value

$$p = -\log \left(\frac{I}{I_0} \right) = \int_0^w \mu(x) \, dx \quad \Rightarrow \text{ Line integral}$$

10-26

Computer-assisted tomography (CAT): measurement principle



Modern X-ray scanner (GE)