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Measurement system

2

Noise

Sources: counting statistics (shot noise), dark current (thermal noise),
charge-to-voltage conversion errors (CCD read-out noise)

Statistical distribution: white Gaussian, Poisson (fluorescence, confocal
microscopy), or speckle (ultrasound, coherent imaging)

+Imaging
system

noise

f g0 = h � f g = (h � f) + n

Asumption of linearity and shift-invariance

g(x) = (h ⇥ f)(x) + n(x)

H(�) = F{h}(�) =
�

Rd

h(x)e�j⇥�,x⇤dx1 · · ·dxd (optical transfer function)
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Deconvolution challenge
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DNA in the nucleus of a sea-urchin cell. The images are of size 512 x 512 x 80 

Max. likelihood deconv (30 iterations)
(Huygens software)

Original 3D data

Deconvolution
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9.1 DECONVOLUTION BY LSI FILTERING
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G0(�) = H(�) · F (�) F̃ (�) = R(�) · G(�)

= R(�) · G0(�)⇤ ⇥� ⌅
signal contribution

+ R(�) · N(�)⇤ ⇥� ⌅
noise contribution

+

noise

f g0 = h � f
f̃ = (r � g)

g

Deconvolution filter

H(�)

Restoration algorithm: linear, space-invariant filter

Problems

How to select the optimal filter

How to balance signal recovery versus noise amplification

R(�)
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Restoration by inverse filtering
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Inverse-filtering solution

Assumption: measurement noise is negligible

G(�) ⇥ H(�) · F (�)

⇤ Rinv(�) =
1

H(�)

Rinv(�)

�

��1

H(�)

Limitations

Inverse filter may be unstable

⇥ stabilized version

Rinv(�) =

�
⇤

⇥

1
H(�)

, |H(�)| � � > 0

0, otherwise

Amplification of noise

F̃ (�) = Rinv(�) · (G0(�) + N(�)) = F (�)⌃ ⇧⌅ ⌥
signal

+Rinv(�) · N(�)⌃ ⇧⌅ ⌥
amplified noise
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Inverse filtering (Cont’d)
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nBlur (noise-free) nOriginal image

nBlur + additive noise Inverse filtering (stabilized version)
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Wiener filter
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Basic hypothesis: g = (h ⇥ f) + n

Signal f = realization of a wide-sense stationary process with known 2nd-order statistics

Spatial autocorrelation function: E{f(x)f(y)} = cf (x� y)

A priori knowledge

H(�): optical transfer function

�f (�) = F{cf (x)}(�): Power spectrum of signal

�n(�) = F{cn(x)}(�): Power spectrum of noise; typ., �n(�) = �2 (white noise)

Optimal Wiener filter

Minimum mean-square error (MMSE) estimator

RWiener(�) =
�f (�)H�(�)

�f (�)|H(�)|2 + �n(�)
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Wiener filter (Cont’d)

Example

Wiener filter: extreme cases

H(�) = e�⇥�⇥
2/(2B2) : Gaussian blur

�f (�) = �2
0 · ⇥�⇥�� : predominantly lowpass spectrum

�n(�) = �2 : White noise

SNR = �2
0/�2 : quadratic signal-to-noise ratio

9

Noise is dominant

�n(�)⇤ �f (�) · |H(�)|2

⌅
RWiener(�) ⇥ 0 (suppression)

Noise is negligible

�n(�)⇤ �f (�) · |H(�)|2

⌅
RWiener(�) ⇥ 1

H(�)
(inverse filter)

SNR=1
SNR=10

SNR=100

SNR=103

ω

RWiener(ω)
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Derivation of the Wiener filter
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�g(!) = |H(!)|2�f (!) + �n(!)

Hypothesis: f̃ = r ⇤
gz }| {

(h ⇤ f + n) where f and n are realizations of stationary processes

MSE = E{|f̃ � f |2} = E{|f̃ |2}� 2E{f̃ · f}+ E{|f |2}

Wiener-Khinchin theorem

E{|f̃ |2} =
1

(2⇡)d

Z

Rd
|R(!)|2 �g(!) d!1 · · · d!d

E
�
|f |2

 
=

1
(2⇡)d

Z

Rd
�f (!) d!1 · · · d!d

E{f̃ · f} = Re

✓
1

(2⇡)d

Z

Rd
R

⇤(!)H⇤(!)�f (!) d!1 · · · d!d

◆
(hyp: �fn(!) = 0)

) MSE =
1

(2⇡)d

Z

Rd

|R(!)|2�g(!)� 2Re
�
R

⇤(!)H⇤(!)�f (!)
�
+ �f (!) d!1 · · · d!d

=
1

(2⇡)d

Z

Rd

 
�g(!)

����R(!)� H
⇤(!)�f (!)

�g(!)

����
2

� |H(!)|2|�f (!)|2

�g(!)
+ �f (!)

!
d!1 · · · d!d

Since �g(!) > 0, 8! 2 Rd

MSE minimum when R(!)� H
⇤(!)�f (!)

�f (!)|H(!)|2 + �n(!)
= 0
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Wiener filter: properties
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Optimality properties

MMSE space-invariant restoration filter

MMSE linear estimator for stationary processes

MMSE estimator for Gaussian stationary processes

Limitations

Spectral power densities are not always known

Can be outperformed by space-variant and/or nonlinear algorithms

Factorization: MMSE denoising of g followed by inverse filtering

RWiener(!) =
�f (!) |H(!)|2

�f (!) |H(!)|2 + �n(!)
· 1

H(!)
=

�h⇤f (!)

�h⇤f (!) + �n(!)
· 1

H(!)
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9.2 RADON TRANSFORM AND FILTERED BACKPROJECTION

■ Radon transform
■ Sinogram
■ Backprojection
■ Inverse Radon transform
■ Filtered backprojection
■ Sampling considerations
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Projection and Radon transform
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Johann Radon 1887-1956

�
x

y

⇥
=

⇤
cos � � sin �

sin � cos �

⌅�
t

s

⇥

�
�

t

s

⇥
=

⇤
cos � sin �

� sin � cos �

⌅�
x

y

⇥

x

t

yp �
(t)

�

s

Sinogram

Trajectory of a point (x0, y0) in Radon space:

t0(✓) = x0 cos ✓ + y0 sin ✓ , t0 = ✓Tx0

In polar coordinates: x0 = r cos�, y0 = r sin� ) t0 = r cos(✓ � �)

Boundedness: f 2 L1(R2) ) p✓ = R{f}(·, ✓) 2 L1(R) for all ✓ 2 [0,⇡]

) kR{f}(·, ✓)kL1(R⇥[0,⇡]) =

Z ⇡

0

Z

R
|R{f}(t, ✓)|dtd✓  ⇡kfkL1(R2)

Radon transform

R : L1(R2) ! L1(R⇥ [0,⇡])

p✓(t) = R{f} (t, ✓) =
Z

R
f(t cos ✓ � s sin ✓, t sin ✓ + s cos ✓)ds

=

Z

R2

f(x) �(t� ✓Tx)dxdy

Unit vector along t-axis: ✓ = (cos ✓, sin ✓) ) t = ✓Tx
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Sinograms
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x

y

�

t

f(x, y)

R{f}(t, �) = p�(t)

Fourier slice with ! = !✓:
F{�(·� x0)}(!) = e�jh!,x0i = e�j!h✓,x0i
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Properties of the Radon transform
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Polar representation of Fourier transform:

f̂pol(!, ✓) = f̂(!)
��
!=(! cos ✓, ! sin ✓)

where f̂(!) =

Z

R2

f(x)e�jh!,xidx

�p̂ �
(�

)

!1

!2

p✓(t) = R{'}(t, ✓) (projection at angle ✓)

p̂✓(!) = '̂(! cos ✓,! sin ✓)Fourier-slice theorem:
Z

R
R{'}(t, ✓)e�j!tdt = '̂(!)|!=!✓

Context: f 2 L1(R2) ) f̂ = F{f} 2 C0(R2) (i.e., f̂(!) is bounded and continuous)

Pseudo-distributivity with respect to convolution

For any fixed ✓ : R{' ⇤ �}(t, ✓) = (p✓ ⇤ q✓)(t) where p✓(t) = R{'}(t, ✓) and q✓(t) = R{�}(t, ✓)

Projected translation invariance: R{'(·� x0)}(t, ✓) = R{'}(t� h✓,x0i, ✓)

Justification: Fourier-slice Theorem + phase shift with e�jh!,x0i = e�j!h✓,x0i
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Backprojection
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...

R∗ pθ{ }(x,y)

pθ(t
)

pπ /2(t)

Interpretation: accumulation of the ray-sums of all rays passing through the point (x, y)

Backprojection operator

R⇤ : L1(R⇥ [0,⇡]) ! L1(R2)

b(x, y) = R⇤{p✓(t)}(x, y) =
Z ⇡

0
p✓(x cos ✓ + y sin ✓) d✓

Adjoint property

The backprojection is the adjoint of the projection operator R

8f 2 L1(R2), 8p 2 L1(R⇥ [0,⇡]), hRf, piRad = hf,R⇤pi

Duality products:

8(f, g) 2 L1(R2)⇥ L1(R2) : hf, gi M
=

Z

R2

f(x, y)g(x, y)dxdy

8(p, q) 2 L1(R⇥ [0,⇡])⇥ L1(R⇥ [0,⇡]) : hp, qiRad
M
=

Z ⇡

0

Z

R
p✓(t)q✓(t, ✓)dtd✓Interpretation

R⇤ is the flow-graph transpose of R

If R is represented by a matrix R, then its adjoint is RT

hu,Rvi = uTRv =
�
RTu

�T
v = hRTu,vi
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Reconstruction by backprojection
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aaa

(x0,y0)
You don't know where the contribution comes from; thus, 
you put it back everywhere!

     ⇒   Blurring effect!

Approximate reconstruction

g(x, y) = R�{p�(t)}(x, y) = R�R{f} (x, y)

Impulse response

R⇤R{�} (x, y) = 1p
x2 + y2

=
1

kxk
F ! 2⇡

k!k (isotropic)

Linear shift-invariant system

R⇤R{f} (x, y) =
✓
f ⇤ 1

k · k

◆
(x, y)
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Determination of impulse response
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Projection of an impulse

R{�(·� x0, ·� y0)} (x, y) = �(t� x0 cos ⇥ � y0 sin ⇥) (sinogram)

Backprojection of the impulse

��(t) = �(t� x0 cos ⇥ � y0 sin ⇥)

R� {��} (x, y) =
⇥�

0

� (x cos ⇥ + y sin ⇥ � x0 cos ⇥ � y0 sin ⇥) d⇥

R� {��} (x, y) =
⇥�

0

� ((x� x0) cos ⇥ + (y � y0) sin ⇥) d⇥ =
1⇥

(x� x0)2 + (y � y0)2

Hint: Make change of variable ⇥ = arctan(t)

⇥ cos(⇥) = sign(t)⇧
1+t2

, sin(⇥) = |t|⇧
1+t2

, d⇥ = dt
1+t2

⇥ R⇥ {��} (x, y) =
� ⇤

�⇤
�((x� x0) + t (y � y0))

dt⌃
1 + t2

Let g(t) be such that g(tn) = 0.
Then, �

�
g(t)

�
=

P
n

�(t�tn)
g0(tn)
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Backprojection  at work
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Shepp-Logan phantom Sinogram

Reconstruction by backprojection

R

R�

g = R�Rf
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Inverse Radon transform
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Proof: 

Reconstruction by filtered backprojection: f(x, y) = R�{q�(t)}(x, y)

where q�(t) = (h � p�) (t) with h(t) F⇥⇤ |⇥|
2�

Hypothesis: f 2 L1(R2) ) f̂ = F{f} 2 C0(R2) and R{f} 2 L1(R⇥ [0,⇡])

Fourier reconstruction in polar coordinates

f(x, y) =
1

(2⇡)2

Z 2⇡

0

Z +1

0
f̂pol(!, ✓)| {z }

p̂✓(!)

ej!t |!| d!d✓ with t = x cos ✓ + y sin ✓

Central-slice theorem + Fourier symmetry: f̂pol(!, ✓ + ⇡) = f̂pol(�!, ✓) = p̂✓(�!)

) f(x, y) =

Z ⇡

0

1

2⇡

✓Z +1

�1
p̂✓(!) ·

|!|
2⇡

· ej!t d!

◆

| {z }
q✓(t)

d✓

Fourier-based reconstruction: f(x) =
1

(2⇡)2

Z

R2

f̂(!)ejh!,xi d!xd!y

Central-slice theorem: p̂✓(!) = f̂(! cos ✓, ! sin ✓) = f̂pol(!, ✓)
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Filtered backprojection

21

Theoretical formula: f(x, y) = R�{q�(t)}(x, y) =
� ⇥

0
q�(x cos � + y sin �) d�

where q�(t) = (h � p�) (t) and h(t) F⇥⇤ |⇤|
2⇥

Discrete backprojection

Loop over pixels: f̃(x, y) =
� ⇥

N

⇥

⌃ ⇧⌅ ⌥
��

·
N⇤

i=1

q�i(x cos �i + y sin �i)

Use interpolation to evaluate q�i(t) for t non-integer (piecewise-linear or higher-order spline)

Discrete implementation

Discrete data ) Digital filtering & Interpolation

Finite number of projections ) Quadrature formula
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FBP filters
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Ram-Lak filter [Ramachandran & Lakshminarayanan, 1971]

ĥRL(⇥) =
|⇥|
2�

· rect
�

⇥

2⇥max

⇥

Shepp-Logan filter [Shepp & Logan, 1974]

ĥSL(⇥) =
|⇥|
2�

· sinc
�

⇥

2⇥max

⇥
· rect

�
⇥

2⇥max

⇥

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.1

0.2

0.3

0.4

0.5

Normalized frequency

1D Filtering step

Loop over projections: (p�i [k], i = 1, . . . , N)

FFT: p�i [k] FFT�⇤ P�i

�
ejn⇥0

⇥

Filtering: Q�i

�
ejn⇥0

⇥
= H

�
ejn⇥0

⇥
· P�i

�
ejn⇥0

⇥

Inverse FFT: Q�i

�
ejn⇥0

⇥ FFT�1

�⇤ q�i [k]
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FBP at work
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f = f(x, y)

Shepp-Logan phantom

FBP reconstruction

Backprojection only

Sinogram

Filtered sinogram (Ram-Lak)

R

K F�⇥ |⇥|
2�

R�

f = R�KRf

g = R�Rf

9-

FBP sampling considerations
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Hypotheses

f̂pol(⇤, �) is essentially bandlimited to ⇤max

fpol(r, ⇥) is essentially space-limited to Rmax

Maximum sampling step

�x 6 ⇡

!max
(Shannon)

) Mmin = 2Rmax
�x samples per view

�max

�⇥ =
�

N
⇥max

Minimum number of views

Nmin = ⇡!max
�! = !maxRmax [Brooks & Weiss, 1978]

Maximum spectral sampling gap: �! 6 ⇡

Rmax
(Shannon in reverse)
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Appendix A. X-ray computer (assisted) tomography (CT or CAT)
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GODFREY N. HOUNSFIELD
Developed computer-assisted tomography.
Constructed first clinical CT-scan in 1972.
1979 Nobel Prize in medicine

ALAN M. CORMACK
Demonstrated the theoretical feasibility of 
X-ray computer-assisted tomography. 
[model experiment in 1963-64] 
1979 Nobel Price in medicine

AARON KLUG
Developed computational techniques for the 
3D reconstruction of electron micrographs. 
[first 3D reconstruction in 1968] 
1982 Nobel Prize in Chemistry

And a few other pioneers…
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Physical principle: Absorption law
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Interaction of EM radiation (X-rays or Gamma rays) with matter

a

µ

aaa

µ1 µ2 µ3

x1 x2 x3

aaa

µ(x)

� Exponential law [Beer-Lambert]
µ: linear attenuation coefficient (cm�1)

Discrete components

I = I0 exp

�
�

n⇤

i=1

µixi

⇥

Continuous medium

I = I0 exp
�
�

⇤ w

0
µ(x) dx

⇥

Homogeneous material

I = I0e�µw

w

Projection value

p = �log
� I

I0

�
=

Z w

0
µ(x) dx ) Line integral
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Computer-assisted tomography (CAT): measurement principle
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Modern X-ray scanner (GE)


