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Measurement system

noise

Imaging | 90 =hx*f A g=(hxf)
system g

m Asumption of linearity and shift-invariance
9(@) = (hx f)() + n(z)

H(w)=F{h}(w) = /d h(x)e @ dg,-..dzy  (optical transfer function)
R

m Noise

= Sources: counting statistics (shot noise), dark current (thermal noise),
charge-to-voltage conversion errors (CCD read-out noise)

= Statistical distribution: white Gaussian, Poisson (fluorescence, confocal
microscopy), or speckle (ultrasound, coherent imaging)



Deconvolution challenge

Original 3D data Max. likelihood deconv (30 iterations)
(Huygens software)

DNA in the nucleus of a sea-urchin cell. The images are of size 512 x 512 x 80
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9.1 DECONVOLUTION BY LSI FILTERING

m Restoration algorithm: linear, space-invariant filter

noise Deconvolution filter ~
f f=(rxg)
L B (2 Rw)
Go(w) = H(w) - F(w) Flw) = R(w)- G(w)

R(w) Go(w) + R(w)-N(w)
N————— N————
signal contribution  noise contribution
m Problems

= How to select the optimal filter

= How to balance signal recovery versus noise amplification

Restoration by inverse filtering

m Inverse-filtering solution
Assumption: measurement noise is negligible

Gw) ~ H(w) - F(w)

m Limitations

= Inverse filter may be unstable
= stabilized version
1
——, |Hw)|=2e>0
0, otherwise

= Amplification of noise
F(w) = Riny(w) - (Go(w) + N(w)) = 5\@+ Riny(w) - N(w)

signal amplified noise
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Inverse filtering (Cont’d)

= Blur (noise-free) = Original image

= Blur + additive noise

Wiener filter

m Basic hypothesis: g = (hx f)+n
Signal f = realization of a wide-sense stationary process with known 2"%-order statistics

Spatial autocorrelation function: E{f(x)f(y)} = c¢(x — y)

m A priori knowledge
H(w): optical transfer function
®¢(w) = F{cs(z)}(w): Power spectrum of signal

®,,(w) = F{cn(x)}(w): Power spectrum of noise; typ., ®,,(w) = o2 (white noise)

m Optimal Wiener filter
Minimum mean-square error (MMSE) estimator

_ w)H )
&7 (@) H@)P + 8, (@)

RWiener (w)

9-8



Wiener filter (Cont’d)

m Wiener filter: extreme cases

Noise is negligible Noise is dominant
P, (w) < Of(w) - [H(w) D, (w) > Op(w) - [H(w)[?
U ) A3
Rwiener (W) =~ @) (inverse filter) Rwiener(w) =~ 0 (suppression)
m Example
' Rwiener(@) SNR=103

H(w) = e~ I«I?/(2B%) : Gaussian blur

SNR=100

®¢(w) =03 - ||w||~" : predominantly lowpass spectrum

@, (w) = o2 : White noise

SNR = o3 /02 : quadratic signal-to-noise ratio

Derivation of the Wiener filter

g9

~ /_/% . . .
Hypothesis: f = r % (h * f + n) where f and n are realizations of stationary processes

MSE = E{|f — fI?} = E{|/"} — 2E{f - f} + E{I/I}
Wiener-Khinchin theorem

E{|fI*} = (2%)”‘ /Rd |R(w)|? @4 (w) dws - - dwa Dy(w) = [H(w) s (w) + Py (w)
E{‘f|2} _ ﬁ/]]{d D¢ (w)dws - - dwg

{7} =Re (g [ R (@)H (@)0s(w)dwn - dus ) (hyp: Bpa(w) = 0)
(2m)¢ Jga

1 i H @) ()
- L (‘I’-"( e -

Since ®,(w) >0, VYw € R?

+ <I>f(w)> dw; -+ - dwy

L H @)@
B (@) [H@) + B,(w)

MSE minimum when R(w)
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Wiener filter: properties

m Factorization: MMSE denoising of g followed by inverse filtering

Rwiener (W) = CI’f(“’)‘H(w)F N Dy (w) 1
o (W) |H(W)| +Pp(w) Hw) Ppef(w)+Pp(w) H(w)

m Optimality properties
= MMSE space-invariant restoration filter
= MMSE linear estimator for stationary processes

= MMSE estimator for Gaussian stationary processes

m Limitations

= Spectral power densities are not always known

= Can be outperformed by space-variant and/or nonlinear algorithms

9.2 RADON TRANSFORM AND FILTERED BACKPROJECTION

= Radon transform

Sinogram

Backprojection

Inverse Radon transform

Filtered backprojection

Sampling considerations
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Projection and Radon transform

QQ

m Radon transform
Johann Radon 1887-1956

Yy
R Ll(Rz) - LI(R ) [0’ ﬂ—]) §§\6 x cosf) —sinf t
po(t) = RA{f} (t79):/Rf(tcoso9—ssin€, tsinf + scosf)ds ‘s‘ ( ) [ Sir‘leﬁ cos } (s>
= /]RZ f(x)d(t — 0T x)dzdy <t> _ [ C?SZ Sinz } <w>
s —sinf  cos y

Unit vector along t-axis: 0 = (cosf,sinf) = t=6"x

Boundedness: f € L1(R?) = pp=R{f}(-,0) € Li(R)forall§ € [0, 7]
= IIR{IC DNz, ®x0,7) :/ / [R{f}(,0)|dtdo < m|| £, m2)
o Jr

m Sinogram
Trajectory of a point (z, yo) in Radon space:
to(0) = o cos O + yo sin O =3 to = 0"z,
In polar coordinates: xg = rcos¢, yo = rsing = tg=rcos(d — @)
9-13
Sinograms R{SH(E6) = po(t)
x

f(z,y)

Fourier slice with w = w@:
FLO(- — a0)}(w) = eTHem0) = o7 (Om0)




Properties of the Radon transform
Context: f € L1(R?) = f=F{f}eCo(R?) (ie., f(w)isbounded and continuous)

Polar representation of Fourier transform:
prI(w79) - f(w)|w: . Where f(w) = f(il:)e_J<w’m>d:13

(wcos b, wsin )

RZ
po(t) = R{p}(t,0) (projection at angle 6)
m Fourier-slice theorem: /RR{SO}(ta f)e It dt = (@) —vo Po(w) = @(wcos b, wsinb)
w1
&
m Projected translation invariance: R{¢(- — x¢)}(¢,0) = R{p}(t — (6, (), 0) 'Q%\\g
Justification: Fourier-slice Theorem + phase shift with e ~i{«:%0) — g=i«w(8:x0) w2

m Pseudo-distributivity with respect to convolution

Forany fixed @ : R{p*x¢}(t,0) = (po * qo)(t) where po(t) = R{p}(t,0) and gg(t) = R{4}(¢,0)
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Backprojection
L o®
m Backprojection operator
R*: Loo(R x[0,7]) = Loo(R?)
. ™ X [ R{n}(xy
bz 9) = R* (&)} wy) = | polwcosd+ ysing) do
0
Interpretation: accumulation of the ray-sums of all rays passing through the point (z, y)
m Adjoint property
The backprojection is the adjoint of the projection operator R
vfe LI(R2)a Vp € LOO(R X [Oaﬂ-])7 <Rf>p>Rad = <fa R*p>
Duality products:
V(f,9) € L1(R?) x Loo(R?) : / f@,y)g(x, y)dady
Interpretation Y(p,q) € Li(R x [0,7]) X Loo(R x [0,7]) 1 (P, @)Rad = / /Pe qo(t, 0)dtdo

= R* is the flow-graph transpose of R

= If R is represented by a matrix R, then its adjoint is RT
(u,Rv) =u'Rv = (RTu)Tv = (R"u,v)



Reconstruction by backprojection

m Approximate reconstruction

9(e,9) = R*{po(O)}(z,y) = R'RAS} (2,9) y \<
You don't know where the contribution comes from; thus,

you put it back everywhere! (%, %)

= Blurring effect!

m Impulse response

: S N S
R*RA{d} (z,y) = R = Tl T (isotropic)
m Linear shift-invariant system
1
RR () () = (4727 ) )
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Determination of impulse response
= Projection of an impulse
RA{( —x0,- —yo)} (x,y) = 0(t — xg cos§ — yo sin ) (sinogram)

m Backprojection of the impulse

0p(t) = 6(t — zp cos B — yo sin b)
R* {0} (z,y) = /6(350039 + ysinf — xgcosf — ypsinb) d
0
[ 1
R*{bo} (z,y) = /(5 ((x — zp) cos @ + (y — yo) sin ) df =
J V@20t P

Hint: Make change of variable 6 = arctan(t)

Let g(¢) be such that g(¢,) = 0. = cos(f) = f‘/glrj% sin(0) = \/ﬂj 4o = 19
Then, d(g(t)) = 5(f7t") o0 dt
(g( )) Zn 9'(tn) = R {4} (z,y) =/ 5((1*10)+t(y*y0))ﬁ




Backprojection at work

Shepp-Logan phantom

Sinogram

Reconstruction by backprojection

g=R'Rf

Inverse Radon transform

Hypothesis: f € L1 (R?) = f=F{f}eCo(R?) and R{f}e Li(R x[0,7])
m Central-slice theorem:  py(w) = f(wcosf, wsinf) = fpol(w,ﬂ)

1 . 4
m Fourier-based reconstruction: f(x) = e fw)e® dw,dw,
T R2

m Reconstruction by filtered backprojection:  f(z,y) = R*{qo(t) }(z,y)

where qo(t) = (h*po) (t) with h(t) <o %

Proof:  Fourier reconstruction in polar coordinates
1 27 +oo X
f@y) = =3 / / Foot(w, 0) & |w| dwdd with ¢ =z cosf + ysinf
(27‘[’)2 Jo 0 \ﬁ(/)_/
Po(w

Central-slice theorem + Fourier symmetry:  foo1(w, 6 + 7) = fpo1(—w, 8) = po(—w)

™ —+o00
= fa = o (o) o) ao

q0(t)




Filtered backprojection

m Theoretical formula:  f(z,y) = R*{qe(t)}(z,y) = / go(x cos + ysinf) de
0

Fo|wl
—> —_—

where gy(t) = (h*pg) (t) and h(t) T

m Discrete implementation
= Discrete data =- Digital filtering & Interpolation

= Finite number of projections = Quadrature formula

m Discrete backprojection

N

Loop over pixels:  f(x,y) = (%) Z o, (z cos 0; + ysinb;)
~—— i=1
AB

Use interpolation to evaluate gy, (¢) for ¢ non-integer (piecewise-linear or higher-order spline)

FBP filters

m 1D Filtering step

Loop over projections: (pg, [k],i =1,...,N) 05F
0.4f
FFT: D, [K] RN Py, (e7me0) oaf
Filtering: Qo, (e7m0) = H(ed™w0) . Py, (e7m+0) o2
0.1F
: FFT!
Inverse FFT:  Qq, (ejmdo) — qo, K] 0oz 0T 08 0s 1o
Normalized frequency
= Ram-Lak filter [Ramachandran & Lakshminarayanan, 1971] m
- |w] w
h = — - rect
re(w) 2 2Wmax
m Shepp-Logan filter [Shepp & Logan, 1974]

- el w w
hsp(w) = 5, sinc . rect .




FBP at work

Shepp-Logan phantom

fzf(:r,y)

FBP reconstruction

R*
f=R'KRf

Backprojection only

g=R'Rf

FBP sampling considerations

m Hypotheses
fpol(w, 0) is essentially bandlimited 10 wax

fpol(r, @) is essentially space-limited to R ax

m Maximum sampling step

™

(Shannon)

wmax

= My, = 2E=max samples per view

m Minimum number of views

Npin = %jx = WmaxPRmax  [Brooks & Weiss, 1978]

Maximum spectral sampling gap:

P
4
= y

Sinogram

|w|
2

Filtered sinogram (Ram-Lak)

Aw = —Wnax

Wmax

(Shannon in reverse)



Appendix A. X-ray computer (assisted) tomography (CT or CAT)

GODFREY N. HOUNSFIELD

Developed computer-assisted tomography.
Constructed first clinical CT-scan in 1972.
1979 Nobel Prize in medicine

ALAN M. CORMACK

Demonstrated the theoretical feasibility of
X-ray computer-assisted tomography.
[model experiment in 1963-64]

1979 Nobel Price in medicine

AARON KLUG

Developed computational techniques for the
3D reconstruction of electron micrographs.
[first 3D reconstruction in 1968]

1982 Nobel Prize in Chemistry

And a few other pioneers...

Physical principle: Absorption law

Interaction of EM radiation (X-rays or Gamma rays) with matter

= Exponential law [Beer-Lambert]
w: linear attenuation coefficient (cm ™)
m Homogeneous material

—>
I = Ipe rw =2 w —
m Discrete components w
" —>
I = Iyexp (— Zum,) == W U, Ws —*
=1 — P ——r
_ _ X % X
m Continuous medium
w —>
I =1Iyexp (—/ wu(zx) d:v) = u(x) —
0

m Projection value

I w
):/ pu(z)dz = Lineintegral
0

p=—log(10

10-25

10-26



Computer-assisted tomography (CAT): measurement principle

Linear translation scan Linear translational scan
(large) and rotation (small) and rotation

ray tube

1st generation 2nd generation
(a) (b)
Rotation only Rotation only

Modern X-ray scanner (GE)

Fan-beam detector Circular ring detector
(c) ()]
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